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Abstract—Silicon neuron circuits emulate the electrophysiolog-
ical behavior of real neurons and conductances. A detailed model
mapped onto silicon neuron can be beneficial to the improvement
of circuit design. Here we present a dynamic systems approach
to obtain a detailed mathematical model describing the dynamics
of a biophysically realistic silicon neuron. The approximate
analytic solution of its firing rate fits simulation data from our
neuron chip fabricated using a 130 nm CMOS process very well.
Meanwhile, transistors that contribute critically to variation of
firing activities are discovered, which helps the improvement of
neuron mismatch.

I. INTRODUCTION

Silicon neuron circuits are one of main building elements in
neuromorphic systems emulating computations carried out in
the nervous system [1]. Based on the leaky integrate-and-fire
neuron model, a phenomenological silicon neuron proposed
in [2], [3] (Figure 1) has biophysically realistic temporal
dynamics. However, there is no ideal model discribing the
relationship between performance and parameters of elements
in the circuit. Improvements of this silicon neuron circuit by
mapping the model onto neuromorphic hardware cannot be
directed theoretically. Dynamic system approach can be used
to designed silicon neurons with desired dynamics [4]–[7].

In this work, we deveploped a theoretical method to im-
prove the design of this phenomenological silicon neuron
according to the dynamic systems approach. We proposed a
differential equation to describe the subthreshold dynamics
of the membrane potential for the silicon neuron, particalarly
including the influence of each transistor’s size in the circuit
and bias parameters to the membrane potential. Meanwhile,
we simplified this differential equation to a two-stage silicon
neuron model through reasonable approximation and obtained
an approximate analytic solution of its firing rate for above-
threshold constant input. We simulated our test chip fabricated
using a 130 nm CMOS process, in which there are 4 silicion
neurons with the same structure, and compared the responses
from chip simulations and theoretical predictions. Comparison
results demonstrated that the approximate analytic solution
of the firing rate can qualitatively characterize responses of
the silicon neuron. Moreover, we explored the contribution
of each transistor’s mismatch to the variation of the firing
rate theoretically, and proposed suggestions on the mismatch
reduction of the silicon neuron.

The paper is organized as follow: first, the subthreshold
dynamics of the silicon neuron and the approximate analytic
solution of its firing rate were introduced in the methods
section; second, results from theoretical analysis and chip
simulations were shown and demonstrated the rationality of
our theoretical method; third, how to reduce the mismatch are
suggested; finally, results were discussed and concluded in the
conclusions section.

II. MATERIALS AND METHODS

A. The silicon neuron circuit

The silicon neuron circuit we describe here is originally
presented in [2], [3] (Figure 1). It is a phenomenological
silicon neuron with bio-physically realistic temporal dynamics.
It comprises four blocks: an input differential pair integrator
(DPI) circuit used as a low-pass filter (M1−M3 and Cm) [8],
a spike-event generation amplifier with current-based positive
feedback (M4−M8), a spike reset block with refractory period
functionality and an inverter generating a spike.

Comparing with the voltage reset mechanism and the re-
fractory period functionality, the current integration and the
current feedback are quite slow. Therefore, its subthreshold
dynamics is predominantly determined by these two slow
processes analyzed in the following. The input DPI circuit
implements the subthreshold behaviors of the silicon neuron,
such as the leaky conductance (M3) producing exponential sub-
threshold dynamics, and the integration through the capacitor
Cm representing the neuron’s membrane capacitance. By as-
suming that all transistors are operated in the subthreshold
domain (the weak-inversion regime) [9], the equations that
characterize this circuit are:

I1 = Ip0r1e
κ

UT
(VDD−Vthr)− 1

UT
(VDD−Va)

I2 = Ip0r2e
κ

UT
(VDD−Vm)− 1

UT
(VDD−Va)

I1 + I2 = Iin

(1)

where r is the width-length ratio of corresponding transistors
(W/L), Ip0 is the transistor dark current when r = 1, UT is
the thermal voltage. For the sake of simplification, we assume
that both subthreshold slope factors (κn and κp) of n- and p-
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Fig. 1: Circuit schematics of the leaky integrate-and-fire neuron [2], [3].
(a) An input differential pair integrator (DPI) circuit models the neuron’s leak
conductance and the exponential subthreshold dynamics of the membrane
potential. (b) An inverting amplifier with positive feedback reproduces the
effect of Sodium activation and inactivation channels in real neurons. (c)
A spike reset block with refractory period functionality realizes the reset
mechanism of the membrane potential after a spike and limits the maximum
activation of the neuron. (d) An inverter generates a short pulse (about several
nanoseconds), representing a spike - the basic event of the communication
between neurons.

MOSFETs here are equal to κ . From above equations, we get:

IS=I2 =
Iin

1+ r1
r2

e
κ

UT
(Vmem−Vthr)

≈ Iin
r2

r1
e−

κ
UT

(Vm−Vthr) (2)

if Vthr is much smaller than Vm.
The spike-event generation amplifier with current-based

positive feedback consists of transistors from M4 - M8. Be-
cause Vm is always much smaller than the power supply
voltage VDD before the spike generates, the first inverter won’t
be switched, which makes sure that M5 and M6 are operated
in saturation. Therefore, the positive feedback circuit can be
characterized by following equations:

M5 : I = In0r5e
κ

UT
Vm− 1

UT
Vb

M6 : I = In0r6e
κ

UT
Vb

M4 : I = Ip0r4e
κ

UT
(VDD−Vm)(e−

1
UT

(VDD−Vd)− e−
1

UT
(VDD−Vc))

M7 : I = Ip0r7e
κ

UT
(VDD−Vc)(1− e−

1
UT

(VDD−Vd))

M8 : IP = Ip0r8e
κ

UT
(VDD−Vc)

(3)
Considering that Vm is always much smaller than the power
supply voltage VDD, the positive feedback current IP can be
simplified further as follows:

IP ≈ In0
r

κ
1+κ

5 r
1

1+κ

6 r8

r7
e

κ2
1+κ

Vm
UT (4)

From this equation, we can conclude that the size of transistor
M4 has no influence on the positive feedback current. However,
it still determines the switch threshold of this spike-event
generation amplifier. According to the above analysis, the
subthreshold dynamics of the membrane potential for the
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Fig. 2: The approximate analytic solution for membrane potential (Vm) of two-
stage neuron circuit model in response to a constant injected current. VESP is
a voltage value of Vm, at which the effective injected current IS is equal to
the positive feedback current IP. T1 denotes the time during which Vm evolves
from the reset voltage Vreset to the voltage VESP, and T2 denotes the time
during which Vm evolves from VESP to VSpike.

silicon neuron can be described by a differential equation as
follows [2], [10]:

Cm
dVm

dt
= Iin

r2

r1
e−

κ
UT

(Vm−Vthr)− r3Iτ + In0
r

κ
1+κ

5 r
1

1+κ

6 r8

r7
e

κ2
1+κ

Vm
UT

(5)
in which r3Iτ represents the leaky current IL through the
transistor M3.

B. The approximate analytic solution of the firing rate

For above-threshold constant input, this silicon neuron fires
at a constant frequency, that is, the firing rate. However,
it seems impossible to obtain the analytic solution of its
firing rate according to Equation 5. So we turn to seek
its approximate analytic solution. Equation 5 shows that the
injected current (IS) plays a major role in the early charge
of the membrane capacitor, and later the positive feedback
current (IP) dominates the spike generation. Currents IS and IP
are equal with each other when Vm =VESP. Therefore, above
differential equation model can be simplified to a two-stage
silicon neuron model [10], as follows: Cm

dVm
dt = Iin

r2
r1

e−
κ

UT
(Vm−Vthr)− r3Iτ i f Vm ≤VESP

Cm
dVm
dt =−r3Iτ + In0

r
κ

1+κ

5 r
1

1+κ

6 r8
r7

e
κ2

1+κ

Vm
UT i f Vm >VESP

(6)
where

VESP =
1+κ

κ(1+2κ)
UT log

Iinr2r7

In0r1r
κ

1+κ

5 r
1

1+κ

6 r8

e
κ

UT
Vthr

Because a certain amount of currents have been ignored
in both stage of spike generation, the response of the two-
stage silicon neuron model will be lower than that of original
differential equation model (Equation 5). However, it can help
us to get a simple analytic solution of the firing rate and to
explore how different parameters (the size of transistors, the
leaky current and biased voltages) will determine the response
of silicon neuron. The time course of membrane potential Vm is



shown in Figure 2. From the approximate analytic expressions
of membrane potential, we get:

T1 ≈−CmUT
κIτ r3

log[1− Iτ r1r3
Iinr2

e
κ

UT
(VESP−Vthr)]

T2 ≈− 1+κ

κ2
CmUT
Iτ r3

log[1− Iτ r3r7

In0r
κ

1+κ

5 r
1

1+κ

6 r8

e−
κ2

1+κ

VESP
UT ]

(7)

Then, by replacing VESP we get:

T = T1 +T2 =

− 1+2κ

κ2
CmUT
Iτ r3

log[1− Iτ r
1

1+2κ

1 r3r
1+κ
1+2κ

7

I
κ

1+2κ

in I
1+κ
1+2κ

n0 r
1

1+2κ

2 r
κ

1+2κ

5 r
κ

1+2κ

6 r
1+κ

1+2κ

8

e−
κ2

1+2κ

Vthr
UT ]

(8)
After we get the interspike interval T , the firing rate F without
considering the refractory period can be described as follows:

F =
1
T

(9)

According to Equation 8 and 9, the relationship between the
firing rate and the injected constant current can be described
as follows in a succinct way:

f (Iin) =
− κ2

1+2κ

IL
CmUT

log[1− ILI
− 1+κ

1+2κ

f b e−
κ2

1+2κ

Vthr
UT I

− κ
1+2κ

in ]

(10)

which reveals that the silicon neuron will not fire until the
injected current is larger than Ith = I

1+2κ
κ

L I
− 1+κ

κ

f b e−κ
Vthr
UT . When

the injected current Iin is controlled by the voltage VDC, Iin =

Ip0e−
κ

UT
(VDC−VDD). Thus the analytic solution of the firing rate

is the function of the voltage VDC:

f (VDC) =
− κ2

1+2κ

IL
CmUT

log[1− ILI
− 1+κ

1+2κ

f b e−
κ2

1+2κ

Vthr+VDD
UT I

− κ
1+2κ

p0 e
κ2

1+2κ

VDC
UT ]

(11)
As we mentioned before [10], the approximate analytic

solution of the firing rate is in qualitative accordance with
that in numerical simulations for the differential equation
(Equation 5) in the condition of small leaky current Iτ and
low voltage Vthr. Considering Equation 11 is an approximate
analytic solution of the firing rate, we used the following
simplified function to fit the mean firing rate of silicon neurons
on the chip:

f (VDC) =
g

log(1−θeγVDC)
(12)

where g, θ and γ are corresponding to the terms in Equation
11.

III. RESULTS

We tested the responses of this silicon neuron in the chip
given the constant current stimulus with different strengths
biased by the voltage VDC (Figure 3). When the voltage VDC is
high, the constant current injected to the silicon neuron is small
and so the silicon neuron cannot fire (not shown). When the
voltage VDC = 0.785V (Figure 3a), the membrane voltage Vm
ramps up rapidly from the reset voltage Vreset due to the input

Fig. 3: Responses of on-chip silicon neurons to constant injection currents.
(a) Membrane potential (Vm) of the silicon neuron to the increasing constant
injection currents biased by the voltage VDC . As the voltage VDC decreases, the
interspike interval also decreases, that is, the spike frequency of the silicon
neuron increases. (b-c) The relationship between mean firing rates and the
voltage VDC for varying Vthr (b) and varying Vτ (c). Circles represent the
data from simulations on the chip, while solid curves are fitted according to
Equation 12. Responses of the silicon neuron are stronger for higher Vthr and
lower Vτ .

current, and then increases slowly as the effective input current
(the first term in Equation 5) becomes small. Although this
effective input current decreases further with the increasing
Vm, Vm still increases dramatically due to the positive feedback
current (the third term in Equation 5) at the later period of a
spike. As the voltage VDC decreases, the interspike interval
also decreases, which indicates the corresponding firing rate
increases. Figure 3b and 3c show relationships between mean
firing rates of the silicon neuron and the voltage VDC. The
data represented by circles are the statistical results from the
experimental data of the chip simulations. The silicon neuron
doesn’t fire until the voltage VDC is lower than a certain value
called the threshold voltage Vth, and then its mean firing rate
rises gradually with the decreasing of the voltage VDC.

The voltage Vthr and Vτ configure the gain and the leaky
current of the silicon neuron, respectively. For a given voltage
VDC, mean firing rates of the silicon neuron and its gain
increase with the increasing voltage Vthr (Figure 3b), but
decrease with the voltage Vτ (Figure 3c). Meanwhile, the
threshold voltage Vth increases with the voltage Vthr (Figure
3b) and decreases with the voltage Vτ (Figure 3c). In order to
check the approximate analytic solution of the firing rate we
proposed (Equation 11), we used a fitting function (Equation
12) to fit the experimental data. Although the silicon neuron
circuit on the chip and the fitting function don’t use the same



set of biased voltages, they almost agree with each other
(Figure 3b and 3c). Above results demonstrate the approximate
analytic solution of the firing rate can qualitatively character-
izes responses of the silicon neuron.

IV. IMPROVEMENT FOR THE MISMATCH

In this section, we explored reduction of mismatch for
silicon neurons based on our approximate analytic solution
of the firing rate.

The general behavior of drain current of transistor in sat-
uration can be described by an approximative model, which
sacrifice accuracy to clarity and simplicity:

ID = I0e
VGS
UT

I0 = µCoxU2
T

W
L e−

VT 0
UT

(13)

where VT 0 is the threshold voltage of the transistor, and Cox
is the oxide capacitance per unit area [9], [11]. I0 denotes the
dark current of the transistor already including the parameter
r (W/L). When transistors have the same gate voltage and
operate in weak inversion, the mismatch of their drain currents
is

σ
2(

∆ID

ID
) = (

gm

ID
)2

σ
2(∆VT 0) =

1
U2

T
σ

2(∆VT 0) =
A2

vt

U2
T

1
S

(14)

where the parameter gm is the transconductance of transistors,
Avt is a technology-dependent parameter, and S is the area of
the transistor [12]–[14]. According to the relationship between
ID and I0, we can further get:

σ
2(∆I0) =

I2
0 A2

vt

U2
T

1
S

(15)

In order to investigate MOSFET mismatch for the response
of silicon neuron, we rewritten the analytic formula of the
firing rate (F = 1

T ) including parameters I0i, i = 1,2, ...8 as
follows:

T =− 1+2κ

κ2
CmUT

I03e
κ

UT
Vτ

log[1−

I
1

1+2κ

01 I03I
1+κ

1+2κ

07

I
1+κ

1+2κ

in I
1−κ

1+2κ

n0 I
1

1+2κ

02 I
κ

1+2κ

05 I
κ

1+2κ

06 I
1+κ
1+2κ

08

e
κ

UT
Vτ e−

κ2
1+2κ

Vthr
UT ]

(16)

where Vτ is bias voltage of M3 responsible for the leaky
current. Here for the sake of simplification, we also define:

B(I01, I02, · · · , I08) =

I
1

1+2κ

01 I03I
1+κ

1+2κ

07

I
1+κ

1+2κ

in I
1−κ

1+2κ

n0 I
1

1+2κ

02 I
κ

1+2κ

05 I
κ

1+2κ

06 I
1+κ
1+2κ

08

e
κ

UT
Vτ e−

κ2
1+2κ

Vthr
UT

(17)

Therefore, the influence of I0 of each transistor on the firing
rate can be described in the following way:

∂F
∂ I0i

=−1+2κ

κ2
CmUT

I03e
κ

UT
Vτ

BF2

1−B
1
I0i

xi (18)

where xi in the above equation is the power of I0i in the
expression B(I01, ..., I08) except I03 and I04 as shown in Table
I. Combining all analysis above, the mismatch of the firing

rate for the silicon neuron is given by the following equation:

σ2(∆F) =
8
∑

i=1
( ∂F

∂ I0i
)

2
σ2(∆I0i)

= F4A2
vt(

1+2κ

κ2
CmUT

I03e
κ

UT
Vτ

B
1−B )

2
8
∑

i=1

x2
i

Si

(19)

TABLE I: Values of xi

x1 x2 x3 x4

1
1+2κ

− 1
1+2κ

1− (1− 1
B )log(1−B) 0

x5 x6 x7 x8

− κ

1+2κ
− κ

1+2κ

1+κ

1+2κ
− 1+κ

1+2κ

If we have enough space on the chip, one effective way to
reduce the mismatch is to increase the size of all transistors
Si. However, if the total area of all transistors is limited,
reducing the mismatch of silicon neuron becomes a standard
optimization problem as follows:

minimize (Si) σ2(∆F)=F4A2
vt(

1+2κ

κ2
CmUT

I03e
κ

UT
Vτ

B
1−B )

2
8
∑

i=1

x2
i

Si

sub ject to
8
∑

i=1
Si = Stot

(20)
In order to minimize σ2(∆F), their area proportions should
be consistent with the ratio of x2

i , i 6= 4 (Table I). Therefore,
the size S3 of the transistor that sets the neuron’s leak
time constants should be considered mostly becasue x3 will
become very large when the silicon neuron fires with the low
frequency. Similarly, the priority of remaining transistors’ sizes
we consider is x7,8, x1,2 and x5,6. Other transistors in the circuit
are not major contributors to neuron’s mismatch and don’t
need to be considered too much.

V. CONCLUSIONS

In this study, we constructed a detailed mathematical model
to describe the subthreshold dynamics of silicon neuron, which
is similar to the silicon neuron model by Livi [2]. The approxi-
mate analytic solution of its firing rate fits simulation data from
our neuron chip fabricated using a 130 nm CMOS process
very well, the fact of which demonstrates the rationality of
our detailed model. Furthermore, considering inevitable errors
of ‘identical’ devices, we also do the mismatch analysis to
explore the contribution of each transistor’s mismatch to the
variation of the firing rate [15], [16], and then conclude that
maintaining the optimal ratio of several critial transistors’
sizes can effectively reduce the mismatch of silicon neuron.
However, we still need to consider some tradeoffs, involving
the mismatch, the speed of the circuit, the limitation of the
area for single neuron circuit, the layout of all transistors and
routings.
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